fix(server): use bigrams for cjk (#24285)

* use bigrams for cjk

* update sql

* linting

* actually migrate ocr

* fix backwards test

* use array

* tweaks
This commit is contained in:
Mert
2025-12-01 12:24:37 -05:00
committed by GitHub
parent d8ca210641
commit 95c29a8aea
5 changed files with 203 additions and 47 deletions

View File

@@ -45,12 +45,12 @@ export class OcrRepository {
textScore: DummyValue.NUMBER,
},
],
DummyValue.STRING,
],
})
upsert(assetId: string, ocrDataList: Insertable<AssetOcrTable>[]) {
upsert(assetId: string, ocrDataList: Insertable<AssetOcrTable>[], searchText: string) {
let query = this.db.with('deleted_ocr', (db) => db.deleteFrom('asset_ocr').where('assetId', '=', assetId));
if (ocrDataList.length > 0) {
const searchText = ocrDataList.map((item) => item.text.trim()).join(' ');
(query as any) = query
.with('inserted_ocr', (db) => db.insertInto('asset_ocr').values(ocrDataList))
.with('inserted_search', (db) =>

View File

@@ -0,0 +1,24 @@
import { Kysely, sql } from 'kysely';
import { tokenizeForSearch } from 'src/utils/database';
export async function up(db: Kysely<any>): Promise<void> {
await sql`truncate ${sql.table('ocr_search')}`.execute(db);
const batch = [];
for await (const { assetId, text } of db
.selectFrom('asset_ocr')
.select(['assetId', sql<string>`string_agg(text, ' ')`.as('text')])
.groupBy('assetId')
.stream()) {
batch.push({ assetId, text: tokenizeForSearch(text) });
if (batch.length >= 5000) {
await db.insertInto('ocr_search').values(batch).execute();
batch.length = 0;
}
}
if (batch.length > 0) {
await db.insertInto('ocr_search').values(batch).execute();
}
}
export async function down(): Promise<void> {}

View File

@@ -12,8 +12,21 @@ describe(OcrService.name, () => {
({ sut, mocks } = newTestService(OcrService));
mocks.config.getWorker.mockReturnValue(ImmichWorker.Microservices);
mocks.assetJob.getForOcr.mockResolvedValue({
visibility: AssetVisibility.Timeline,
previewFile: assetStub.image.files[1].path,
});
});
const mockOcrResult = (...texts: string[]) => {
mocks.machineLearning.ocr.mockResolvedValue({
box: texts.flatMap((_, i) => Array.from({ length: 8 }, (_, j) => i * 10 + j)),
boxScore: texts.map(() => 0.9),
text: texts,
textScore: texts.map(() => 0.95),
});
};
it('should work', () => {
expect(sut).toBeDefined();
});
@@ -72,10 +85,6 @@ describe(OcrService.name, () => {
text: ['One Two Three', 'Four Five'],
textScore: [0.95, 0.85],
});
mocks.assetJob.getForOcr.mockResolvedValue({
visibility: AssetVisibility.Timeline,
previewFile: assetStub.image.files[1].path,
});
expect(await sut.handleOcr({ id: assetStub.image.id })).toEqual(JobStatus.Success);
@@ -88,36 +97,40 @@ describe(OcrService.name, () => {
maxResolution: 736,
}),
);
expect(mocks.ocr.upsert).toHaveBeenCalledWith(assetStub.image.id, [
{
assetId: assetStub.image.id,
boxScore: 0.9,
text: 'One Two Three',
textScore: 0.95,
x1: 10,
y1: 20,
x2: 30,
y2: 40,
x3: 50,
y3: 60,
x4: 70,
y4: 80,
},
{
assetId: assetStub.image.id,
boxScore: 0.8,
text: 'Four Five',
textScore: 0.85,
x1: 90,
y1: 100,
x2: 110,
y2: 120,
x3: 130,
y3: 140,
x4: 150,
y4: 160,
},
]);
expect(mocks.ocr.upsert).toHaveBeenCalledWith(
assetStub.image.id,
[
{
assetId: assetStub.image.id,
boxScore: 0.9,
text: 'One Two Three',
textScore: 0.95,
x1: 10,
y1: 20,
x2: 30,
y2: 40,
x3: 50,
y3: 60,
x4: 70,
y4: 80,
},
{
assetId: assetStub.image.id,
boxScore: 0.8,
text: 'Four Five',
textScore: 0.85,
x1: 90,
y1: 100,
x2: 110,
y2: 120,
x3: 130,
y3: 140,
x4: 150,
y4: 160,
},
],
'One Two Three Four Five',
);
});
it('should apply config settings', async () => {
@@ -133,11 +146,7 @@ describe(OcrService.name, () => {
},
},
});
mocks.machineLearning.ocr.mockResolvedValue({ box: [], boxScore: [], text: [], textScore: [] });
mocks.assetJob.getForOcr.mockResolvedValue({
visibility: AssetVisibility.Timeline,
previewFile: assetStub.image.files[1].path,
});
mockOcrResult();
expect(await sut.handleOcr({ id: assetStub.image.id })).toEqual(JobStatus.Success);
@@ -150,7 +159,7 @@ describe(OcrService.name, () => {
maxResolution: 1500,
}),
);
expect(mocks.ocr.upsert).toHaveBeenCalledWith(assetStub.image.id, []);
expect(mocks.ocr.upsert).toHaveBeenCalledWith(assetStub.image.id, [], '');
});
it('should skip invisible assets', async () => {
@@ -173,5 +182,83 @@ describe(OcrService.name, () => {
expect(mocks.machineLearning.ocr).not.toHaveBeenCalled();
expect(mocks.ocr.upsert).not.toHaveBeenCalled();
});
describe('search tokenization', () => {
it('should generate bigrams for Chinese text', async () => {
mockOcrResult('機器學習');
await sut.handleOcr({ id: assetStub.image.id });
expect(mocks.ocr.upsert).toHaveBeenCalledWith(assetStub.image.id, expect.any(Array), '機器 器學 學習');
});
it('should generate bigrams for Japanese text', async () => {
mockOcrResult('テスト');
await sut.handleOcr({ id: assetStub.image.id });
expect(mocks.ocr.upsert).toHaveBeenCalledWith(assetStub.image.id, expect.any(Array), 'テス スト');
});
it('should generate bigrams for Korean text', async () => {
mockOcrResult('한국어');
await sut.handleOcr({ id: assetStub.image.id });
expect(mocks.ocr.upsert).toHaveBeenCalledWith(assetStub.image.id, expect.any(Array), '한국 국어');
});
it('should pass through Latin text unchanged', async () => {
mockOcrResult('Hello World');
await sut.handleOcr({ id: assetStub.image.id });
expect(mocks.ocr.upsert).toHaveBeenCalledWith(assetStub.image.id, expect.any(Array), 'Hello World');
});
it('should handle mixed CJK and Latin text', async () => {
mockOcrResult('機器學習Model');
await sut.handleOcr({ id: assetStub.image.id });
expect(mocks.ocr.upsert).toHaveBeenCalledWith(assetStub.image.id, expect.any(Array), '機器 器學 學習 Model');
});
it('should handle year followed by CJK', async () => {
mockOcrResult('2024年レポート');
await sut.handleOcr({ id: assetStub.image.id });
expect(mocks.ocr.upsert).toHaveBeenCalledWith(
assetStub.image.id,
expect.any(Array),
'2024 年レ レポ ポー ート',
);
});
it('should join multiple OCR boxes', async () => {
mockOcrResult('機器', 'Learning');
await sut.handleOcr({ id: assetStub.image.id });
expect(mocks.ocr.upsert).toHaveBeenCalledWith(assetStub.image.id, expect.any(Array), '機器 Learning');
});
it('should normalize whitespace', async () => {
mockOcrResult(' Hello World ');
await sut.handleOcr({ id: assetStub.image.id });
expect(mocks.ocr.upsert).toHaveBeenCalledWith(assetStub.image.id, expect.any(Array), 'Hello World');
});
it('should keep single CJK characters', async () => {
mockOcrResult('A', '中', 'B');
await sut.handleOcr({ id: assetStub.image.id });
expect(mocks.ocr.upsert).toHaveBeenCalledWith(assetStub.image.id, expect.any(Array), 'A 中 B');
});
});
});
});

View File

@@ -5,6 +5,7 @@ import { AssetVisibility, JobName, JobStatus, QueueName } from 'src/enum';
import { OCR } from 'src/repositories/machine-learning.repository';
import { BaseService } from 'src/services/base.service';
import { JobItem, JobOf } from 'src/types';
import { tokenizeForSearch } from 'src/utils/database';
import { isOcrEnabled } from 'src/utils/misc';
@Injectable()
@@ -53,8 +54,8 @@ export class OcrService extends BaseService {
}
const ocrResults = await this.machineLearningRepository.ocr(asset.previewFile, machineLearning.ocr);
await this.ocrRepository.upsert(id, this.parseOcrResults(id, ocrResults));
const { ocrDataList, searchText } = this.parseOcrResults(id, ocrResults);
await this.ocrRepository.upsert(id, ocrDataList, searchText);
await this.assetRepository.upsertJobStatus({ assetId: id, ocrAt: new Date() });
@@ -64,7 +65,9 @@ export class OcrService extends BaseService {
private parseOcrResults(id: string, { box, boxScore, text, textScore }: OCR) {
const ocrDataList = [];
const searchTokens = [];
for (let i = 0; i < text.length; i++) {
const rawText = text[i];
const boxOffset = i * 8;
ocrDataList.push({
assetId: id,
@@ -78,9 +81,11 @@ export class OcrService extends BaseService {
y4: box[boxOffset + 7],
boxScore: boxScore[i],
textScore: textScore[i],
text: text[i],
text: rawText,
});
searchTokens.push(...tokenizeForSearch(rawText));
}
return ocrDataList;
return { ocrDataList, searchText: searchTokens.join(' ') };
}
}

View File

@@ -306,6 +306,46 @@ export function withTagId<O>(qb: SelectQueryBuilder<DB, 'asset', O>, tagId: stri
);
}
const isCJK = (c: number): boolean =>
(c >= 0x4e_00 && c <= 0x9f_ff) ||
(c >= 0xac_00 && c <= 0xd7_af) ||
(c >= 0x30_40 && c <= 0x30_9f) ||
(c >= 0x30_a0 && c <= 0x30_ff) ||
(c >= 0x34_00 && c <= 0x4d_bf);
export const tokenizeForSearch = (text: string): string[] => {
/* eslint-disable unicorn/prefer-code-point */
const tokens: string[] = [];
let i = 0;
while (i < text.length) {
const c = text.charCodeAt(i);
if (c <= 32) {
i++;
continue;
}
const start = i;
if (isCJK(c)) {
while (i < text.length && isCJK(text.charCodeAt(i))) {
i++;
}
if (i - start === 1) {
tokens.push(text[start]);
} else {
for (let k = start; k < i - 1; k++) {
tokens.push(text[k] + text[k + 1]);
}
}
} else {
while (i < text.length && text.charCodeAt(i) > 32 && !isCJK(text.charCodeAt(i))) {
i++;
}
tokens.push(text.slice(start, i));
}
}
return tokens;
};
const joinDeduplicationPlugin = new DeduplicateJoinsPlugin();
/** TODO: This should only be used for search-related queries, not as a general purpose query builder */
@@ -391,7 +431,7 @@ export function searchAssetBuilder(kysely: Kysely<DB>, options: AssetSearchBuild
.$if(!!options.ocr, (qb) =>
qb
.innerJoin('ocr_search', 'asset.id', 'ocr_search.assetId')
.where(() => sql`f_unaccent(ocr_search.text) %>> f_unaccent(${options.ocr!})`),
.where(() => sql`f_unaccent(ocr_search.text) %>> f_unaccent(${tokenizeForSearch(options.ocr!).join(' ')})`),
)
.$if(!!options.type, (qb) => qb.where('asset.type', '=', options.type!))
.$if(options.isFavorite !== undefined, (qb) => qb.where('asset.isFavorite', '=', options.isFavorite!))