mirror of
https://github.com/immich-app/immich.git
synced 2025-12-25 01:11:43 +03:00
92 lines
3.0 KiB
TypeScript
92 lines
3.0 KiB
TypeScript
import { Injectable } from '@nestjs/common';
|
|
import { JOBS_ASSET_PAGINATION_SIZE } from 'src/constants';
|
|
import { OnJob } from 'src/decorators';
|
|
import { AssetVisibility, JobName, JobStatus, QueueName } from 'src/enum';
|
|
import { OCR } from 'src/repositories/machine-learning.repository';
|
|
import { BaseService } from 'src/services/base.service';
|
|
import { JobItem, JobOf } from 'src/types';
|
|
import { tokenizeForSearch } from 'src/utils/database';
|
|
import { isOcrEnabled } from 'src/utils/misc';
|
|
|
|
@Injectable()
|
|
export class OcrService extends BaseService {
|
|
@OnJob({ name: JobName.OcrQueueAll, queue: QueueName.Ocr })
|
|
async handleQueueOcr({ force }: JobOf<JobName.OcrQueueAll>): Promise<JobStatus> {
|
|
const { machineLearning } = await this.getConfig({ withCache: false });
|
|
if (!isOcrEnabled(machineLearning)) {
|
|
return JobStatus.Skipped;
|
|
}
|
|
|
|
if (force) {
|
|
await this.ocrRepository.deleteAll();
|
|
}
|
|
|
|
let jobs: JobItem[] = [];
|
|
const assets = this.assetJobRepository.streamForOcrJob(force);
|
|
|
|
for await (const asset of assets) {
|
|
jobs.push({ name: JobName.Ocr, data: { id: asset.id } });
|
|
|
|
if (jobs.length >= JOBS_ASSET_PAGINATION_SIZE) {
|
|
await this.jobRepository.queueAll(jobs);
|
|
jobs = [];
|
|
}
|
|
}
|
|
|
|
await this.jobRepository.queueAll(jobs);
|
|
return JobStatus.Success;
|
|
}
|
|
|
|
@OnJob({ name: JobName.Ocr, queue: QueueName.Ocr })
|
|
async handleOcr({ id }: JobOf<JobName.Ocr>): Promise<JobStatus> {
|
|
const { machineLearning } = await this.getConfig({ withCache: true });
|
|
if (!isOcrEnabled(machineLearning)) {
|
|
return JobStatus.Skipped;
|
|
}
|
|
|
|
const asset = await this.assetJobRepository.getForOcr(id);
|
|
if (!asset || !asset.previewFile) {
|
|
return JobStatus.Failed;
|
|
}
|
|
|
|
if (asset.visibility === AssetVisibility.Hidden) {
|
|
return JobStatus.Skipped;
|
|
}
|
|
|
|
const ocrResults = await this.machineLearningRepository.ocr(asset.previewFile, machineLearning.ocr);
|
|
const { ocrDataList, searchText } = this.parseOcrResults(id, ocrResults);
|
|
await this.ocrRepository.upsert(id, ocrDataList, searchText);
|
|
|
|
await this.assetRepository.upsertJobStatus({ assetId: id, ocrAt: new Date() });
|
|
|
|
this.logger.debug(`Processed ${ocrResults.text.length} OCR result(s) for ${id}`);
|
|
return JobStatus.Success;
|
|
}
|
|
|
|
private parseOcrResults(id: string, { box, boxScore, text, textScore }: OCR) {
|
|
const ocrDataList = [];
|
|
const searchTokens = [];
|
|
for (let i = 0; i < text.length; i++) {
|
|
const rawText = text[i];
|
|
const boxOffset = i * 8;
|
|
ocrDataList.push({
|
|
assetId: id,
|
|
x1: box[boxOffset],
|
|
y1: box[boxOffset + 1],
|
|
x2: box[boxOffset + 2],
|
|
y2: box[boxOffset + 3],
|
|
x3: box[boxOffset + 4],
|
|
y3: box[boxOffset + 5],
|
|
x4: box[boxOffset + 6],
|
|
y4: box[boxOffset + 7],
|
|
boxScore: boxScore[i],
|
|
textScore: textScore[i],
|
|
text: rawText,
|
|
});
|
|
searchTokens.push(...tokenizeForSearch(rawText));
|
|
}
|
|
|
|
return { ocrDataList, searchText: searchTokens.join(' ') };
|
|
}
|
|
}
|