mirror of
https://github.com/immich-app/immich.git
synced 2025-12-26 01:11:47 +03:00
140 lines
5.1 KiB
TypeScript
140 lines
5.1 KiB
TypeScript
import { Injectable } from '@nestjs/common';
|
|
import { SystemConfig } from 'src/config';
|
|
import { JOBS_ASSET_PAGINATION_SIZE } from 'src/constants';
|
|
import { OnEvent, OnJob } from 'src/decorators';
|
|
import { DatabaseLock, ImmichWorker, JobName, JobStatus, QueueName } from 'src/enum';
|
|
import { WithoutProperty } from 'src/repositories/asset.repository';
|
|
import { ArgOf } from 'src/repositories/event.repository';
|
|
import { BaseService } from 'src/services/base.service';
|
|
import { JobOf } from 'src/types';
|
|
import { getAssetFiles } from 'src/utils/asset.util';
|
|
import { getCLIPModelInfo, isSmartSearchEnabled } from 'src/utils/misc';
|
|
import { usePagination } from 'src/utils/pagination';
|
|
|
|
@Injectable()
|
|
export class SmartInfoService extends BaseService {
|
|
@OnEvent({ name: 'config.init', workers: [ImmichWorker.MICROSERVICES] })
|
|
async onConfigInit({ newConfig }: ArgOf<'config.init'>) {
|
|
await this.init(newConfig);
|
|
}
|
|
|
|
@OnEvent({ name: 'config.update', workers: [ImmichWorker.MICROSERVICES], server: true })
|
|
async onConfigUpdate({ oldConfig, newConfig }: ArgOf<'config.update'>) {
|
|
await this.init(newConfig, oldConfig);
|
|
}
|
|
|
|
@OnEvent({ name: 'config.validate' })
|
|
onConfigValidate({ newConfig }: ArgOf<'config.validate'>) {
|
|
try {
|
|
getCLIPModelInfo(newConfig.machineLearning.clip.modelName);
|
|
} catch {
|
|
throw new Error(
|
|
`Unknown CLIP model: ${newConfig.machineLearning.clip.modelName}. Please check the model name for typos and confirm this is a supported model.`,
|
|
);
|
|
}
|
|
}
|
|
|
|
private async init(newConfig: SystemConfig, oldConfig?: SystemConfig) {
|
|
if (!isSmartSearchEnabled(newConfig.machineLearning)) {
|
|
return;
|
|
}
|
|
|
|
await this.databaseRepository.withLock(DatabaseLock.CLIPDimSize, async () => {
|
|
const { dimSize } = getCLIPModelInfo(newConfig.machineLearning.clip.modelName);
|
|
const dbDimSize = await this.searchRepository.getDimensionSize();
|
|
this.logger.verbose(`Current database CLIP dimension size is ${dbDimSize}`);
|
|
|
|
const modelChange =
|
|
oldConfig && oldConfig.machineLearning.clip.modelName !== newConfig.machineLearning.clip.modelName;
|
|
const dimSizeChange = dbDimSize !== dimSize;
|
|
if (!modelChange && !dimSizeChange) {
|
|
return;
|
|
}
|
|
|
|
const { isPaused } = await this.jobRepository.getQueueStatus(QueueName.SMART_SEARCH);
|
|
if (!isPaused) {
|
|
await this.jobRepository.pause(QueueName.SMART_SEARCH);
|
|
}
|
|
await this.jobRepository.waitForQueueCompletion(QueueName.SMART_SEARCH);
|
|
|
|
if (dimSizeChange) {
|
|
this.logger.log(
|
|
`Dimension size of model ${newConfig.machineLearning.clip.modelName} is ${dimSize}, but database expects ${dbDimSize}.`,
|
|
);
|
|
this.logger.log(`Updating database CLIP dimension size to ${dimSize}.`);
|
|
await this.searchRepository.setDimensionSize(dimSize);
|
|
this.logger.log(`Successfully updated database CLIP dimension size from ${dbDimSize} to ${dimSize}.`);
|
|
} else {
|
|
await this.searchRepository.deleteAllSearchEmbeddings();
|
|
}
|
|
|
|
if (!isPaused) {
|
|
await this.jobRepository.resume(QueueName.SMART_SEARCH);
|
|
}
|
|
});
|
|
}
|
|
|
|
@OnJob({ name: JobName.QUEUE_SMART_SEARCH, queue: QueueName.SMART_SEARCH })
|
|
async handleQueueEncodeClip({ force }: JobOf<JobName.QUEUE_SMART_SEARCH>): Promise<JobStatus> {
|
|
const { machineLearning } = await this.getConfig({ withCache: false });
|
|
if (!isSmartSearchEnabled(machineLearning)) {
|
|
return JobStatus.SKIPPED;
|
|
}
|
|
|
|
if (force) {
|
|
await this.searchRepository.deleteAllSearchEmbeddings();
|
|
}
|
|
|
|
const assetPagination = usePagination(JOBS_ASSET_PAGINATION_SIZE, (pagination) => {
|
|
return force
|
|
? this.assetRepository.getAll(pagination, { isVisible: true })
|
|
: this.assetRepository.getWithout(pagination, WithoutProperty.SMART_SEARCH);
|
|
});
|
|
|
|
for await (const assets of assetPagination) {
|
|
await this.jobRepository.queueAll(
|
|
assets.map((asset) => ({ name: JobName.SMART_SEARCH, data: { id: asset.id } })),
|
|
);
|
|
}
|
|
|
|
return JobStatus.SUCCESS;
|
|
}
|
|
|
|
@OnJob({ name: JobName.SMART_SEARCH, queue: QueueName.SMART_SEARCH })
|
|
async handleEncodeClip({ id }: JobOf<JobName.SMART_SEARCH>): Promise<JobStatus> {
|
|
const { machineLearning } = await this.getConfig({ withCache: true });
|
|
if (!isSmartSearchEnabled(machineLearning)) {
|
|
return JobStatus.SKIPPED;
|
|
}
|
|
|
|
const [asset] = await this.assetRepository.getByIds([id], { files: true });
|
|
if (!asset) {
|
|
return JobStatus.FAILED;
|
|
}
|
|
|
|
if (!asset.isVisible) {
|
|
return JobStatus.SKIPPED;
|
|
}
|
|
|
|
const { previewFile } = getAssetFiles(asset.files);
|
|
if (!previewFile) {
|
|
return JobStatus.FAILED;
|
|
}
|
|
|
|
const embedding = await this.machineLearningRepository.encodeImage(
|
|
machineLearning.urls,
|
|
previewFile.path,
|
|
machineLearning.clip,
|
|
);
|
|
|
|
if (this.databaseRepository.isBusy(DatabaseLock.CLIPDimSize)) {
|
|
this.logger.verbose(`Waiting for CLIP dimension size to be updated`);
|
|
await this.databaseRepository.wait(DatabaseLock.CLIPDimSize);
|
|
}
|
|
|
|
await this.searchRepository.upsert(asset.id, embedding);
|
|
|
|
return JobStatus.SUCCESS;
|
|
}
|
|
}
|