Files
immich/server/src/services/person.service.ts
2025-03-28 10:40:09 -04:00

749 lines
27 KiB
TypeScript

import { BadRequestException, Injectable, NotFoundException } from '@nestjs/common';
import { FACE_THUMBNAIL_SIZE, JOBS_ASSET_PAGINATION_SIZE } from 'src/constants';
import { StorageCore } from 'src/cores/storage.core';
import { OnJob } from 'src/decorators';
import { BulkIdErrorReason, BulkIdResponseDto } from 'src/dtos/asset-ids.response.dto';
import { AuthDto } from 'src/dtos/auth.dto';
import {
AssetFaceCreateDto,
AssetFaceDeleteDto,
AssetFaceResponseDto,
AssetFaceUpdateDto,
FaceDto,
mapFaces,
mapPerson,
MergePersonDto,
PeopleResponseDto,
PeopleUpdateDto,
PersonCreateDto,
PersonResponseDto,
PersonSearchDto,
PersonStatisticsResponseDto,
PersonUpdateDto,
} from 'src/dtos/person.dto';
import { AssetFaceEntity } from 'src/entities/asset-face.entity';
import { AssetEntity } from 'src/entities/asset.entity';
import { FaceSearchEntity } from 'src/entities/face-search.entity';
import { PersonEntity } from 'src/entities/person.entity';
import {
AssetType,
CacheControl,
ImageFormat,
JobName,
JobStatus,
Permission,
PersonPathType,
QueueName,
SourceType,
SystemMetadataKey,
} from 'src/enum';
import { WithoutProperty } from 'src/repositories/asset.repository';
import { BoundingBox } from 'src/repositories/machine-learning.repository';
import { UpdateFacesData } from 'src/repositories/person.repository';
import { BaseService } from 'src/services/base.service';
import { CropOptions, ImageDimensions, InputDimensions, JobItem, JobOf } from 'src/types';
import { getAssetFiles } from 'src/utils/asset.util';
import { ImmichFileResponse } from 'src/utils/file';
import { mimeTypes } from 'src/utils/mime-types';
import { isFaceImportEnabled, isFacialRecognitionEnabled } from 'src/utils/misc';
import { usePagination } from 'src/utils/pagination';
@Injectable()
export class PersonService extends BaseService {
async getAll(auth: AuthDto, dto: PersonSearchDto): Promise<PeopleResponseDto> {
const { withHidden = false, closestAssetId, closestPersonId, page, size } = dto;
let closestFaceAssetId = closestAssetId;
const pagination = {
take: size,
skip: (page - 1) * size,
};
if (closestPersonId) {
const person = await this.personRepository.getById(closestPersonId);
if (!person?.faceAssetId) {
throw new NotFoundException('Person not found');
}
closestFaceAssetId = person.faceAssetId;
}
const { machineLearning } = await this.getConfig({ withCache: false });
const { items, hasNextPage } = await this.personRepository.getAllForUser(pagination, auth.user.id, {
minimumFaceCount: machineLearning.facialRecognition.minFaces,
withHidden,
closestFaceAssetId,
});
const { total, hidden } = await this.personRepository.getNumberOfPeople(auth.user.id);
return {
people: items.map((person) => mapPerson(person)),
hasNextPage,
total,
hidden,
};
}
async reassignFaces(auth: AuthDto, personId: string, dto: AssetFaceUpdateDto): Promise<PersonResponseDto[]> {
await this.requireAccess({ auth, permission: Permission.PERSON_UPDATE, ids: [personId] });
const person = await this.findOrFail(personId);
const result: PersonResponseDto[] = [];
const changeFeaturePhoto: string[] = [];
for (const data of dto.data) {
const faces = await this.personRepository.getFacesByIds([{ personId: data.personId, assetId: data.assetId }]);
for (const face of faces) {
await this.requireAccess({ auth, permission: Permission.PERSON_CREATE, ids: [face.id] });
if (person.faceAssetId === null) {
changeFeaturePhoto.push(person.id);
}
if (face.person && face.person.faceAssetId === face.id) {
changeFeaturePhoto.push(face.person.id);
}
await this.personRepository.reassignFace(face.id, personId);
}
result.push(mapPerson(person));
}
if (changeFeaturePhoto.length > 0) {
// Remove duplicates
await this.createNewFeaturePhoto([...new Set(changeFeaturePhoto)]);
}
return result;
}
async reassignFacesById(auth: AuthDto, personId: string, dto: FaceDto): Promise<PersonResponseDto> {
await this.requireAccess({ auth, permission: Permission.PERSON_UPDATE, ids: [personId] });
await this.requireAccess({ auth, permission: Permission.PERSON_CREATE, ids: [dto.id] });
const face = await this.personRepository.getFaceById(dto.id);
const person = await this.findOrFail(personId);
await this.personRepository.reassignFace(face.id, personId);
if (person.faceAssetId === null) {
await this.createNewFeaturePhoto([person.id]);
}
if (face.person && face.person.faceAssetId === face.id) {
await this.createNewFeaturePhoto([face.person.id]);
}
return await this.findOrFail(personId).then(mapPerson);
}
async getFacesById(auth: AuthDto, dto: FaceDto): Promise<AssetFaceResponseDto[]> {
await this.requireAccess({ auth, permission: Permission.ASSET_READ, ids: [dto.id] });
const faces = await this.personRepository.getFaces(dto.id);
return faces.map((asset) => mapFaces(asset, auth));
}
async createNewFeaturePhoto(changeFeaturePhoto: string[]) {
this.logger.debug(
`Changing feature photos for ${changeFeaturePhoto.length} ${changeFeaturePhoto.length > 1 ? 'people' : 'person'}`,
);
const jobs: JobItem[] = [];
for (const personId of changeFeaturePhoto) {
const assetFace = await this.personRepository.getRandomFace(personId);
if (assetFace) {
await this.personRepository.update({ id: personId, faceAssetId: assetFace.id });
jobs.push({ name: JobName.GENERATE_PERSON_THUMBNAIL, data: { id: personId } });
}
}
await this.jobRepository.queueAll(jobs);
}
async getById(auth: AuthDto, id: string): Promise<PersonResponseDto> {
await this.requireAccess({ auth, permission: Permission.PERSON_READ, ids: [id] });
return this.findOrFail(id).then(mapPerson);
}
async getStatistics(auth: AuthDto, id: string): Promise<PersonStatisticsResponseDto> {
await this.requireAccess({ auth, permission: Permission.PERSON_READ, ids: [id] });
return this.personRepository.getStatistics(id);
}
async getThumbnail(auth: AuthDto, id: string): Promise<ImmichFileResponse> {
await this.requireAccess({ auth, permission: Permission.PERSON_READ, ids: [id] });
const person = await this.personRepository.getById(id);
if (!person || !person.thumbnailPath) {
throw new NotFoundException();
}
return new ImmichFileResponse({
path: person.thumbnailPath,
contentType: mimeTypes.lookup(person.thumbnailPath),
cacheControl: CacheControl.PRIVATE_WITHOUT_CACHE,
});
}
async create(auth: AuthDto, dto: PersonCreateDto): Promise<PersonResponseDto> {
const person = await this.personRepository.create({
ownerId: auth.user.id,
name: dto.name,
birthDate: dto.birthDate,
isHidden: dto.isHidden,
isFavorite: dto.isFavorite,
color: dto.color,
});
return mapPerson(person);
}
async update(auth: AuthDto, id: string, dto: PersonUpdateDto): Promise<PersonResponseDto> {
await this.requireAccess({ auth, permission: Permission.PERSON_UPDATE, ids: [id] });
const { name, birthDate, isHidden, featureFaceAssetId: assetId, isFavorite, color } = dto;
// TODO: set by faceId directly
let faceId: string | undefined = undefined;
if (assetId) {
await this.requireAccess({ auth, permission: Permission.ASSET_READ, ids: [assetId] });
const [face] = await this.personRepository.getFacesByIds([{ personId: id, assetId }]);
if (!face) {
throw new BadRequestException('Invalid assetId for feature face');
}
faceId = face.id;
}
const person = await this.personRepository.update({
id,
faceAssetId: faceId,
name,
birthDate,
isHidden,
isFavorite,
color,
});
if (assetId) {
await this.jobRepository.queue({ name: JobName.GENERATE_PERSON_THUMBNAIL, data: { id } });
}
return mapPerson(person);
}
async updateAll(auth: AuthDto, dto: PeopleUpdateDto): Promise<BulkIdResponseDto[]> {
const results: BulkIdResponseDto[] = [];
for (const person of dto.people) {
try {
await this.update(auth, person.id, {
isHidden: person.isHidden,
name: person.name,
birthDate: person.birthDate,
featureFaceAssetId: person.featureFaceAssetId,
isFavorite: person.isFavorite,
});
results.push({ id: person.id, success: true });
} catch (error: Error | any) {
this.logger.error(`Unable to update ${person.id} : ${error}`, error?.stack);
results.push({ id: person.id, success: false, error: BulkIdErrorReason.UNKNOWN });
}
}
return results;
}
private async delete(people: PersonEntity[]) {
await Promise.all(people.map((person) => this.storageRepository.unlink(person.thumbnailPath)));
await this.personRepository.delete(people);
this.logger.debug(`Deleted ${people.length} people`);
}
@OnJob({ name: JobName.PERSON_CLEANUP, queue: QueueName.BACKGROUND_TASK })
async handlePersonCleanup(): Promise<JobStatus> {
const people = await this.personRepository.getAllWithoutFaces();
await this.delete(people);
return JobStatus.SUCCESS;
}
@OnJob({ name: JobName.QUEUE_FACE_DETECTION, queue: QueueName.FACE_DETECTION })
async handleQueueDetectFaces({ force }: JobOf<JobName.QUEUE_FACE_DETECTION>): Promise<JobStatus> {
const { machineLearning } = await this.getConfig({ withCache: false });
if (!isFacialRecognitionEnabled(machineLearning)) {
return JobStatus.SKIPPED;
}
if (force) {
await this.personRepository.deleteFaces({ sourceType: SourceType.MACHINE_LEARNING });
await this.handlePersonCleanup();
}
const assetPagination = usePagination(JOBS_ASSET_PAGINATION_SIZE, (pagination) => {
return force === false
? this.assetRepository.getWithout(pagination, WithoutProperty.FACES)
: this.assetRepository.getAll(pagination, {
orderDirection: 'desc',
withFaces: true,
withArchived: true,
isVisible: true,
});
});
for await (const assets of assetPagination) {
await this.jobRepository.queueAll(
assets.map((asset) => ({ name: JobName.FACE_DETECTION, data: { id: asset.id } })),
);
}
if (force === undefined) {
await this.jobRepository.queue({ name: JobName.PERSON_CLEANUP });
}
return JobStatus.SUCCESS;
}
@OnJob({ name: JobName.FACE_DETECTION, queue: QueueName.FACE_DETECTION })
async handleDetectFaces({ id }: JobOf<JobName.FACE_DETECTION>): Promise<JobStatus> {
const { machineLearning } = await this.getConfig({ withCache: true });
if (!isFacialRecognitionEnabled(machineLearning)) {
return JobStatus.SKIPPED;
}
const relations = { exifInfo: true, faces: { person: false, withDeleted: true }, files: true };
const [asset] = await this.assetRepository.getByIds([id], relations);
const { previewFile } = getAssetFiles(asset.files);
if (!asset || !previewFile) {
return JobStatus.FAILED;
}
if (!asset.isVisible) {
return JobStatus.SKIPPED;
}
const { imageHeight, imageWidth, faces } = await this.machineLearningRepository.detectFaces(
machineLearning.urls,
previewFile.path,
machineLearning.facialRecognition,
);
this.logger.debug(`${faces.length} faces detected in ${previewFile.path}`);
const facesToAdd: (Partial<AssetFaceEntity> & { id: string; assetId: string })[] = [];
const embeddings: FaceSearchEntity[] = [];
const mlFaceIds = new Set<string>();
for (const face of asset.faces) {
if (face.sourceType === SourceType.MACHINE_LEARNING) {
mlFaceIds.add(face.id);
}
}
const heightScale = imageHeight / (asset.faces[0]?.imageHeight || 1);
const widthScale = imageWidth / (asset.faces[0]?.imageWidth || 1);
for (const { boundingBox, embedding } of faces) {
const scaledBox = {
x1: boundingBox.x1 * widthScale,
y1: boundingBox.y1 * heightScale,
x2: boundingBox.x2 * widthScale,
y2: boundingBox.y2 * heightScale,
};
const match = asset.faces.find((face) => this.iou(face, scaledBox) > 0.5);
if (match && !mlFaceIds.delete(match.id)) {
embeddings.push({ faceId: match.id, embedding });
} else if (!match) {
const faceId = this.cryptoRepository.randomUUID();
facesToAdd.push({
id: faceId,
assetId: asset.id,
imageHeight,
imageWidth,
boundingBoxX1: boundingBox.x1,
boundingBoxY1: boundingBox.y1,
boundingBoxX2: boundingBox.x2,
boundingBoxY2: boundingBox.y2,
});
embeddings.push({ faceId, embedding });
}
}
const faceIdsToRemove = [...mlFaceIds];
if (facesToAdd.length > 0 || faceIdsToRemove.length > 0 || embeddings.length > 0) {
await this.personRepository.refreshFaces(facesToAdd, faceIdsToRemove, embeddings);
}
if (faceIdsToRemove.length > 0) {
this.logger.log(`Removed ${faceIdsToRemove.length} faces below detection threshold in asset ${id}`);
}
if (facesToAdd.length > 0) {
this.logger.log(`Detected ${facesToAdd.length} new faces in asset ${id}`);
const jobs = facesToAdd.map((face) => ({ name: JobName.FACIAL_RECOGNITION, data: { id: face.id } }) as const);
await this.jobRepository.queueAll([{ name: JobName.QUEUE_FACIAL_RECOGNITION, data: { force: false } }, ...jobs]);
} else if (embeddings.length > 0) {
this.logger.log(`Added ${embeddings.length} face embeddings for asset ${id}`);
}
await this.assetRepository.upsertJobStatus({ assetId: asset.id, facesRecognizedAt: new Date() });
return JobStatus.SUCCESS;
}
private iou(face: AssetFaceEntity, newBox: BoundingBox): number {
const x1 = Math.max(face.boundingBoxX1, newBox.x1);
const y1 = Math.max(face.boundingBoxY1, newBox.y1);
const x2 = Math.min(face.boundingBoxX2, newBox.x2);
const y2 = Math.min(face.boundingBoxY2, newBox.y2);
const intersection = Math.max(0, x2 - x1) * Math.max(0, y2 - y1);
const area1 = (face.boundingBoxX2 - face.boundingBoxX1) * (face.boundingBoxY2 - face.boundingBoxY1);
const area2 = (newBox.x2 - newBox.x1) * (newBox.y2 - newBox.y1);
const union = area1 + area2 - intersection;
return intersection / union;
}
@OnJob({ name: JobName.QUEUE_FACIAL_RECOGNITION, queue: QueueName.FACIAL_RECOGNITION })
async handleQueueRecognizeFaces({ force, nightly }: JobOf<JobName.QUEUE_FACIAL_RECOGNITION>): Promise<JobStatus> {
const { machineLearning } = await this.getConfig({ withCache: false });
if (!isFacialRecognitionEnabled(machineLearning)) {
return JobStatus.SKIPPED;
}
await this.jobRepository.waitForQueueCompletion(QueueName.THUMBNAIL_GENERATION, QueueName.FACE_DETECTION);
if (nightly) {
const [state, latestFaceDate] = await Promise.all([
this.systemMetadataRepository.get(SystemMetadataKey.FACIAL_RECOGNITION_STATE),
this.personRepository.getLatestFaceDate(),
]);
if (state?.lastRun && latestFaceDate && state.lastRun > latestFaceDate) {
this.logger.debug('Skipping facial recognition nightly since no face has been added since the last run');
return JobStatus.SKIPPED;
}
}
const { waiting } = await this.jobRepository.getJobCounts(QueueName.FACIAL_RECOGNITION);
if (force) {
await this.personRepository.unassignFaces({ sourceType: SourceType.MACHINE_LEARNING });
await this.handlePersonCleanup();
} else if (waiting) {
this.logger.debug(
`Skipping facial recognition queueing because ${waiting} job${waiting > 1 ? 's are' : ' is'} already queued`,
);
return JobStatus.SKIPPED;
}
const lastRun = new Date().toISOString();
const facePagination = this.personRepository.getAllFaces(
force ? undefined : { personId: null, sourceType: SourceType.MACHINE_LEARNING },
);
let jobs: { name: JobName.FACIAL_RECOGNITION; data: { id: string; deferred: false } }[] = [];
for await (const face of facePagination) {
jobs.push({ name: JobName.FACIAL_RECOGNITION, data: { id: face.id, deferred: false } });
if (jobs.length === JOBS_ASSET_PAGINATION_SIZE) {
await this.jobRepository.queueAll(jobs);
jobs = [];
}
}
await this.jobRepository.queueAll(jobs);
await this.systemMetadataRepository.set(SystemMetadataKey.FACIAL_RECOGNITION_STATE, { lastRun });
return JobStatus.SUCCESS;
}
@OnJob({ name: JobName.FACIAL_RECOGNITION, queue: QueueName.FACIAL_RECOGNITION })
async handleRecognizeFaces({ id, deferred }: JobOf<JobName.FACIAL_RECOGNITION>): Promise<JobStatus> {
const { machineLearning } = await this.getConfig({ withCache: true });
if (!isFacialRecognitionEnabled(machineLearning)) {
return JobStatus.SKIPPED;
}
const face = await this.personRepository.getFaceByIdWithAssets(id, { faceSearch: true }, [
'id',
'personId',
'sourceType',
]);
if (!face || !face.asset) {
this.logger.warn(`Face ${id} not found`);
return JobStatus.FAILED;
}
if (face.sourceType !== SourceType.MACHINE_LEARNING) {
this.logger.warn(`Skipping face ${id} due to source ${face.sourceType}`);
return JobStatus.SKIPPED;
}
if (!face.faceSearch?.embedding) {
this.logger.warn(`Face ${id} does not have an embedding`);
return JobStatus.FAILED;
}
if (face.personId) {
this.logger.debug(`Face ${id} already has a person assigned`);
return JobStatus.SKIPPED;
}
const matches = await this.searchRepository.searchFaces({
userIds: [face.asset.ownerId],
embedding: face.faceSearch.embedding,
maxDistance: machineLearning.facialRecognition.maxDistance,
numResults: machineLearning.facialRecognition.minFaces,
});
// `matches` also includes the face itself
if (machineLearning.facialRecognition.minFaces > 1 && matches.length <= 1) {
this.logger.debug(`Face ${id} only matched the face itself, skipping`);
return JobStatus.SKIPPED;
}
this.logger.debug(`Face ${id} has ${matches.length} matches`);
const isCore = matches.length >= machineLearning.facialRecognition.minFaces && !face.asset.isArchived;
if (!isCore && !deferred) {
this.logger.debug(`Deferring non-core face ${id} for later processing`);
await this.jobRepository.queue({ name: JobName.FACIAL_RECOGNITION, data: { id, deferred: true } });
return JobStatus.SKIPPED;
}
let personId = matches.find((match) => match.personId)?.personId;
if (!personId) {
const matchWithPerson = await this.searchRepository.searchFaces({
userIds: [face.asset.ownerId],
embedding: face.faceSearch.embedding,
maxDistance: machineLearning.facialRecognition.maxDistance,
numResults: 1,
hasPerson: true,
});
if (matchWithPerson.length > 0) {
personId = matchWithPerson[0].personId;
}
}
if (isCore && !personId) {
this.logger.log(`Creating new person for face ${id}`);
const newPerson = await this.personRepository.create({ ownerId: face.asset.ownerId, faceAssetId: face.id });
await this.jobRepository.queue({ name: JobName.GENERATE_PERSON_THUMBNAIL, data: { id: newPerson.id } });
personId = newPerson.id;
}
if (personId) {
this.logger.debug(`Assigning face ${id} to person ${personId}`);
await this.personRepository.reassignFaces({ faceIds: [id], newPersonId: personId });
}
return JobStatus.SUCCESS;
}
@OnJob({ name: JobName.MIGRATE_PERSON, queue: QueueName.MIGRATION })
async handlePersonMigration({ id }: JobOf<JobName.MIGRATE_PERSON>): Promise<JobStatus> {
const person = await this.personRepository.getById(id);
if (!person) {
return JobStatus.FAILED;
}
await this.storageCore.movePersonFile(person, PersonPathType.FACE);
return JobStatus.SUCCESS;
}
@OnJob({ name: JobName.GENERATE_PERSON_THUMBNAIL, queue: QueueName.THUMBNAIL_GENERATION })
async handleGeneratePersonThumbnail(data: JobOf<JobName.GENERATE_PERSON_THUMBNAIL>): Promise<JobStatus> {
const { machineLearning, metadata, image } = await this.getConfig({ withCache: true });
if (!isFacialRecognitionEnabled(machineLearning) && !isFaceImportEnabled(metadata)) {
return JobStatus.SKIPPED;
}
const person = await this.personRepository.getById(data.id);
if (!person?.faceAssetId) {
this.logger.error(`Could not generate person thumbnail: person ${person?.id} has no face asset`);
return JobStatus.FAILED;
}
const face = await this.personRepository.getFaceByIdWithAssets(person.faceAssetId);
if (!face) {
this.logger.error(`Could not generate person thumbnail: face ${person.faceAssetId} not found`);
return JobStatus.FAILED;
}
const {
assetId,
boundingBoxX1: x1,
boundingBoxX2: x2,
boundingBoxY1: y1,
boundingBoxY2: y2,
imageWidth: oldWidth,
imageHeight: oldHeight,
} = face;
const asset = await this.assetRepository.getById(assetId, {
exifInfo: true,
files: true,
});
if (!asset) {
this.logger.error(`Could not generate person thumbnail: asset ${assetId} does not exist`);
return JobStatus.FAILED;
}
const { width, height, inputPath } = await this.getInputDimensions(asset, { width: oldWidth, height: oldHeight });
const thumbnailPath = StorageCore.getPersonThumbnailPath(person);
this.storageCore.ensureFolders(thumbnailPath);
const thumbnailOptions = {
colorspace: image.colorspace,
format: ImageFormat.JPEG,
size: FACE_THUMBNAIL_SIZE,
quality: image.thumbnail.quality,
crop: this.getCrop({ old: { width: oldWidth, height: oldHeight }, new: { width, height } }, { x1, y1, x2, y2 }),
processInvalidImages: process.env.IMMICH_PROCESS_INVALID_IMAGES === 'true',
};
await this.mediaRepository.generateThumbnail(inputPath, thumbnailOptions, thumbnailPath);
await this.personRepository.update({ id: person.id, thumbnailPath });
return JobStatus.SUCCESS;
}
async mergePerson(auth: AuthDto, id: string, dto: MergePersonDto): Promise<BulkIdResponseDto[]> {
const mergeIds = dto.ids;
if (mergeIds.includes(id)) {
throw new BadRequestException('Cannot merge a person into themselves');
}
await this.requireAccess({ auth, permission: Permission.PERSON_UPDATE, ids: [id] });
let primaryPerson = await this.findOrFail(id);
const primaryName = primaryPerson.name || primaryPerson.id;
const results: BulkIdResponseDto[] = [];
const allowedIds = await this.checkAccess({
auth,
permission: Permission.PERSON_MERGE,
ids: mergeIds,
});
for (const mergeId of mergeIds) {
const hasAccess = allowedIds.has(mergeId);
if (!hasAccess) {
results.push({ id: mergeId, success: false, error: BulkIdErrorReason.NO_PERMISSION });
continue;
}
try {
const mergePerson = await this.personRepository.getById(mergeId);
if (!mergePerson) {
results.push({ id: mergeId, success: false, error: BulkIdErrorReason.NOT_FOUND });
continue;
}
const update: Partial<PersonEntity> = {};
if (!primaryPerson.name && mergePerson.name) {
update.name = mergePerson.name;
}
if (!primaryPerson.birthDate && mergePerson.birthDate) {
update.birthDate = mergePerson.birthDate;
}
if (Object.keys(update).length > 0) {
primaryPerson = await this.personRepository.update({ id: primaryPerson.id, ...update });
}
const mergeName = mergePerson.name || mergePerson.id;
const mergeData: UpdateFacesData = { oldPersonId: mergeId, newPersonId: id };
this.logger.log(`Merging ${mergeName} into ${primaryName}`);
await this.personRepository.reassignFaces(mergeData);
await this.delete([mergePerson]);
this.logger.log(`Merged ${mergeName} into ${primaryName}`);
results.push({ id: mergeId, success: true });
} catch (error: Error | any) {
this.logger.error(`Unable to merge ${mergeId} into ${id}: ${error}`, error?.stack);
results.push({ id: mergeId, success: false, error: BulkIdErrorReason.UNKNOWN });
}
}
return results;
}
private async findOrFail(id: string) {
const person = await this.personRepository.getById(id);
if (!person) {
throw new BadRequestException('Person not found');
}
return person;
}
private async getInputDimensions(asset: AssetEntity, oldDims: ImageDimensions): Promise<InputDimensions> {
if (!asset.exifInfo?.exifImageHeight || !asset.exifInfo.exifImageWidth) {
throw new Error(`Asset ${asset.id} dimensions are unknown`);
}
const { previewFile } = getAssetFiles(asset.files);
if (!previewFile) {
throw new Error(`Asset ${asset.id} has no preview path`);
}
if (asset.type === AssetType.IMAGE) {
let { exifImageWidth: width, exifImageHeight: height } = asset.exifInfo;
if (oldDims.height > oldDims.width !== height > width) {
[width, height] = [height, width];
}
return { width, height, inputPath: asset.originalPath };
}
const { width, height } = await this.mediaRepository.getImageDimensions(previewFile.path);
return { width, height, inputPath: previewFile.path };
}
private getCrop(dims: { old: ImageDimensions; new: ImageDimensions }, { x1, y1, x2, y2 }: BoundingBox): CropOptions {
const widthScale = dims.new.width / dims.old.width;
const heightScale = dims.new.height / dims.old.height;
const halfWidth = (widthScale * (x2 - x1)) / 2;
const halfHeight = (heightScale * (y2 - y1)) / 2;
const middleX = Math.round(widthScale * x1 + halfWidth);
const middleY = Math.round(heightScale * y1 + halfHeight);
// zoom out 10%
const targetHalfSize = Math.floor(Math.max(halfWidth, halfHeight) * 1.1);
// get the longest distance from the center of the image without overflowing
const newHalfSize = Math.min(
middleX - Math.max(0, middleX - targetHalfSize),
middleY - Math.max(0, middleY - targetHalfSize),
Math.min(dims.new.width - 1, middleX + targetHalfSize) - middleX,
Math.min(dims.new.height - 1, middleY + targetHalfSize) - middleY,
);
return {
left: middleX - newHalfSize,
top: middleY - newHalfSize,
width: newHalfSize * 2,
height: newHalfSize * 2,
};
}
// TODO return a asset face response
async createFace(auth: AuthDto, dto: AssetFaceCreateDto): Promise<void> {
await Promise.all([
this.requireAccess({ auth, permission: Permission.ASSET_READ, ids: [dto.assetId] }),
this.requireAccess({ auth, permission: Permission.PERSON_READ, ids: [dto.personId] }),
]);
await this.personRepository.createAssetFace({
personId: dto.personId,
assetId: dto.assetId,
imageHeight: dto.imageHeight,
imageWidth: dto.imageWidth,
boundingBoxX1: dto.x,
boundingBoxX2: dto.x + dto.width,
boundingBoxY1: dto.y,
boundingBoxY2: dto.y + dto.height,
sourceType: SourceType.MANUAL,
});
}
async deleteFace(auth: AuthDto, id: string, dto: AssetFaceDeleteDto): Promise<void> {
await this.requireAccess({ auth, permission: Permission.FACE_DELETE, ids: [id] });
return dto.force ? this.personRepository.deleteAssetFace(id) : this.personRepository.softDeleteAssetFaces(id);
}
}