mirror of
https://github.com/immich-app/immich.git
synced 2025-12-27 09:14:55 +03:00
feat(ml): composable ml (#9973)
* modularize model classes * various fixes * expose port * change response * round coordinates * simplify preload * update server * simplify interface simplify * update tests * composable endpoint * cleanup fixes remove unnecessary interface support text input, cleanup * ew camelcase * update server server fixes fix typing * ml fixes update locustfile fixes * cleaner response * better repo response * update tests formatting and typing rename * undo compose change * linting fix type actually fix typing * stricter typing fix detection-only response no need for defaultdict * update spec file update api linting * update e2e * unnecessary dimension * remove commented code * remove duplicate code * remove unused imports * add batch dim
This commit is contained in:
@@ -1,24 +1,40 @@
|
||||
from typing import Any
|
||||
|
||||
from app.schemas import ModelType
|
||||
from app.models.base import InferenceModel
|
||||
from app.models.clip.textual import MClipTextualEncoder, OpenClipTextualEncoder
|
||||
from app.models.clip.visual import OpenClipVisualEncoder
|
||||
from app.schemas import ModelSource, ModelTask, ModelType
|
||||
|
||||
from .base import InferenceModel
|
||||
from .clip import MCLIPEncoder, OpenCLIPEncoder
|
||||
from .constants import is_insightface, is_mclip, is_openclip
|
||||
from .facial_recognition import FaceRecognizer
|
||||
from .constants import get_model_source
|
||||
from .facial_recognition.detection import FaceDetector
|
||||
from .facial_recognition.recognition import FaceRecognizer
|
||||
|
||||
|
||||
def from_model_type(model_type: ModelType, model_name: str, **model_kwargs: Any) -> InferenceModel:
|
||||
match model_type:
|
||||
case ModelType.CLIP:
|
||||
if is_openclip(model_name):
|
||||
return OpenCLIPEncoder(model_name, **model_kwargs)
|
||||
elif is_mclip(model_name):
|
||||
return MCLIPEncoder(model_name, **model_kwargs)
|
||||
case ModelType.FACIAL_RECOGNITION:
|
||||
if is_insightface(model_name):
|
||||
return FaceRecognizer(model_name, **model_kwargs)
|
||||
def get_model_class(model_name: str, model_type: ModelType, model_task: ModelTask) -> type[InferenceModel]:
|
||||
source = get_model_source(model_name)
|
||||
match source, model_type, model_task:
|
||||
case ModelSource.OPENCLIP | ModelSource.MCLIP, ModelType.VISUAL, ModelTask.SEARCH:
|
||||
return OpenClipVisualEncoder
|
||||
|
||||
case ModelSource.OPENCLIP, ModelType.TEXTUAL, ModelTask.SEARCH:
|
||||
return OpenClipTextualEncoder
|
||||
|
||||
case ModelSource.MCLIP, ModelType.TEXTUAL, ModelTask.SEARCH:
|
||||
return MClipTextualEncoder
|
||||
|
||||
case ModelSource.INSIGHTFACE, ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION:
|
||||
return FaceDetector
|
||||
|
||||
case ModelSource.INSIGHTFACE, ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION:
|
||||
return FaceRecognizer
|
||||
|
||||
case _:
|
||||
raise ValueError(f"Unknown model type {model_type}")
|
||||
raise ValueError(f"Unknown model combination: {source}, {model_type}, {model_task}")
|
||||
|
||||
raise ValueError(f"Unknown {model_type} model {model_name}")
|
||||
|
||||
def from_model_type(model_name: str, model_type: ModelType, model_task: ModelTask, **kwargs: Any) -> InferenceModel:
|
||||
return get_model_class(model_name, model_type, model_task)(model_name, **kwargs)
|
||||
|
||||
|
||||
def get_model_deps(model_name: str, model_type: ModelType, model_task: ModelTask) -> list[tuple[ModelType, ModelTask]]:
|
||||
return get_model_class(model_name, model_type, model_task).depends
|
||||
|
||||
@@ -3,7 +3,7 @@ from __future__ import annotations
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from shutil import rmtree
|
||||
from typing import Any
|
||||
from typing import Any, ClassVar
|
||||
|
||||
import onnxruntime as ort
|
||||
from huggingface_hub import snapshot_download
|
||||
@@ -11,13 +11,14 @@ from huggingface_hub import snapshot_download
|
||||
import ann.ann
|
||||
from app.models.constants import SUPPORTED_PROVIDERS
|
||||
|
||||
from ..config import get_cache_dir, get_hf_model_name, log, settings
|
||||
from ..schemas import ModelRuntime, ModelType
|
||||
from ..config import clean_name, log, settings
|
||||
from ..schemas import ModelFormat, ModelIdentity, ModelSession, ModelTask, ModelType
|
||||
from .ann import AnnSession
|
||||
|
||||
|
||||
class InferenceModel(ABC):
|
||||
_model_type: ModelType
|
||||
depends: ClassVar[list[ModelIdentity]]
|
||||
identity: ClassVar[ModelIdentity]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@@ -26,16 +27,16 @@ class InferenceModel(ABC):
|
||||
providers: list[str] | None = None,
|
||||
provider_options: list[dict[str, Any]] | None = None,
|
||||
sess_options: ort.SessionOptions | None = None,
|
||||
preferred_runtime: ModelRuntime | None = None,
|
||||
preferred_format: ModelFormat | None = None,
|
||||
**model_kwargs: Any,
|
||||
) -> None:
|
||||
self.loaded = False
|
||||
self.model_name = model_name
|
||||
self.model_name = clean_name(model_name)
|
||||
self.cache_dir = Path(cache_dir) if cache_dir is not None else self.cache_dir_default
|
||||
self.providers = providers if providers is not None else self.providers_default
|
||||
self.provider_options = provider_options if provider_options is not None else self.provider_options_default
|
||||
self.sess_options = sess_options if sess_options is not None else self.sess_options_default
|
||||
self.preferred_runtime = preferred_runtime if preferred_runtime is not None else self.preferred_runtime_default
|
||||
self.preferred_format = preferred_format if preferred_format is not None else self.preferred_format_default
|
||||
|
||||
def download(self) -> None:
|
||||
if not self.cached:
|
||||
@@ -47,35 +48,36 @@ class InferenceModel(ABC):
|
||||
def load(self) -> None:
|
||||
if self.loaded:
|
||||
return
|
||||
|
||||
self.download()
|
||||
log.info(f"Loading {self.model_type.replace('-', ' ')} model '{self.model_name}' to memory")
|
||||
self._load()
|
||||
self.session = self._load()
|
||||
self.loaded = True
|
||||
|
||||
def predict(self, inputs: Any, **model_kwargs: Any) -> Any:
|
||||
def predict(self, *inputs: Any, **model_kwargs: Any) -> Any:
|
||||
self.load()
|
||||
if model_kwargs:
|
||||
self.configure(**model_kwargs)
|
||||
return self._predict(inputs)
|
||||
return self._predict(*inputs, **model_kwargs)
|
||||
|
||||
@abstractmethod
|
||||
def _predict(self, inputs: Any) -> Any: ...
|
||||
def _predict(self, *inputs: Any, **model_kwargs: Any) -> Any: ...
|
||||
|
||||
def configure(self, **model_kwargs: Any) -> None:
|
||||
def configure(self, **kwargs: Any) -> None:
|
||||
pass
|
||||
|
||||
def _download(self) -> None:
|
||||
ignore_patterns = [] if self.preferred_runtime == ModelRuntime.ARMNN else ["*.armnn"]
|
||||
ignore_patterns = [] if self.preferred_format == ModelFormat.ARMNN else ["*.armnn"]
|
||||
snapshot_download(
|
||||
get_hf_model_name(self.model_name),
|
||||
f"immich-app/{clean_name(self.model_name)}",
|
||||
cache_dir=self.cache_dir,
|
||||
local_dir=self.cache_dir,
|
||||
local_dir_use_symlinks=False,
|
||||
ignore_patterns=ignore_patterns,
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
def _load(self) -> None: ...
|
||||
def _load(self) -> ModelSession:
|
||||
return self._make_session(self.model_path)
|
||||
|
||||
def clear_cache(self) -> None:
|
||||
if not self.cache_dir.exists():
|
||||
@@ -99,7 +101,7 @@ class InferenceModel(ABC):
|
||||
self.cache_dir.unlink()
|
||||
self.cache_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def _make_session(self, model_path: Path) -> AnnSession | ort.InferenceSession:
|
||||
def _make_session(self, model_path: Path) -> ModelSession:
|
||||
if not model_path.is_file():
|
||||
onnx_path = model_path.with_suffix(".onnx")
|
||||
if not onnx_path.is_file():
|
||||
@@ -124,9 +126,21 @@ class InferenceModel(ABC):
|
||||
raise ValueError(f"Unsupported model file type: {model_path.suffix}")
|
||||
return session
|
||||
|
||||
@property
|
||||
def model_dir(self) -> Path:
|
||||
return self.cache_dir / self.model_type.value
|
||||
|
||||
@property
|
||||
def model_path(self) -> Path:
|
||||
return self.model_dir / f"model.{self.preferred_format}"
|
||||
|
||||
@property
|
||||
def model_task(self) -> ModelTask:
|
||||
return self.identity[1]
|
||||
|
||||
@property
|
||||
def model_type(self) -> ModelType:
|
||||
return self._model_type
|
||||
return self.identity[0]
|
||||
|
||||
@property
|
||||
def cache_dir(self) -> Path:
|
||||
@@ -138,11 +152,11 @@ class InferenceModel(ABC):
|
||||
|
||||
@property
|
||||
def cache_dir_default(self) -> Path:
|
||||
return get_cache_dir(self.model_name, self.model_type)
|
||||
return settings.cache_folder / self.model_task.value / self.model_name
|
||||
|
||||
@property
|
||||
def cached(self) -> bool:
|
||||
return self.cache_dir.is_dir() and any(self.cache_dir.iterdir())
|
||||
return self.model_path.is_file()
|
||||
|
||||
@property
|
||||
def providers(self) -> list[str]:
|
||||
@@ -226,14 +240,14 @@ class InferenceModel(ABC):
|
||||
return sess_options
|
||||
|
||||
@property
|
||||
def preferred_runtime(self) -> ModelRuntime:
|
||||
return self._preferred_runtime
|
||||
def preferred_format(self) -> ModelFormat:
|
||||
return self._preferred_format
|
||||
|
||||
@preferred_runtime.setter
|
||||
def preferred_runtime(self, preferred_runtime: ModelRuntime) -> None:
|
||||
log.debug(f"Setting preferred runtime to {preferred_runtime}")
|
||||
self._preferred_runtime = preferred_runtime
|
||||
@preferred_format.setter
|
||||
def preferred_format(self, preferred_format: ModelFormat) -> None:
|
||||
log.debug(f"Setting preferred format to {preferred_format}")
|
||||
self._preferred_format = preferred_format
|
||||
|
||||
@property
|
||||
def preferred_runtime_default(self) -> ModelRuntime:
|
||||
return ModelRuntime.ARMNN if ann.ann.is_available and settings.ann else ModelRuntime.ONNX
|
||||
def preferred_format_default(self) -> ModelFormat:
|
||||
return ModelFormat.ARMNN if ann.ann.is_available and settings.ann else ModelFormat.ONNX
|
||||
|
||||
@@ -5,9 +5,9 @@ from aiocache.lock import OptimisticLock
|
||||
from aiocache.plugins import TimingPlugin
|
||||
|
||||
from app.models import from_model_type
|
||||
from app.models.base import InferenceModel
|
||||
|
||||
from ..schemas import ModelType, has_profiling
|
||||
from .base import InferenceModel
|
||||
from ..schemas import ModelTask, ModelType, has_profiling
|
||||
|
||||
|
||||
class ModelCache:
|
||||
@@ -31,28 +31,21 @@ class ModelCache:
|
||||
if profiling:
|
||||
plugins.append(TimingPlugin())
|
||||
|
||||
self.revalidate_enable = revalidate
|
||||
self.should_revalidate = revalidate
|
||||
|
||||
self.cache = SimpleMemoryCache(timeout=timeout, plugins=plugins, namespace=None)
|
||||
|
||||
async def get(self, model_name: str, model_type: ModelType, **model_kwargs: Any) -> InferenceModel:
|
||||
"""
|
||||
Args:
|
||||
model_name: Name of model in the model hub used for the task.
|
||||
model_type: Model type or task, which determines which model zoo is used.
|
||||
|
||||
Returns:
|
||||
model: The requested model.
|
||||
"""
|
||||
|
||||
key = f"{model_name}{model_type.value}{model_kwargs.get('mode', '')}"
|
||||
async def get(
|
||||
self, model_name: str, model_type: ModelType, model_task: ModelTask, **model_kwargs: Any
|
||||
) -> InferenceModel:
|
||||
key = f"{model_name}{model_type}{model_task}"
|
||||
|
||||
async with OptimisticLock(self.cache, key) as lock:
|
||||
model: InferenceModel | None = await self.cache.get(key)
|
||||
if model is None:
|
||||
model = from_model_type(model_type, model_name, **model_kwargs)
|
||||
model = from_model_type(model_name, model_type, model_task, **model_kwargs)
|
||||
await lock.cas(model, ttl=model_kwargs.get("ttl", None))
|
||||
elif self.revalidate_enable:
|
||||
elif self.should_revalidate:
|
||||
await self.revalidate(key, model_kwargs.get("ttl", None))
|
||||
return model
|
||||
|
||||
|
||||
@@ -1,189 +0,0 @@
|
||||
import json
|
||||
from abc import abstractmethod
|
||||
from functools import cached_property
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
from typing import Any, Literal
|
||||
|
||||
import numpy as np
|
||||
from numpy.typing import NDArray
|
||||
from PIL import Image
|
||||
from tokenizers import Encoding, Tokenizer
|
||||
|
||||
from app.config import clean_name, log
|
||||
from app.models.transforms import crop, get_pil_resampling, normalize, resize, to_numpy
|
||||
from app.schemas import ModelType
|
||||
|
||||
from .base import InferenceModel
|
||||
|
||||
|
||||
class BaseCLIPEncoder(InferenceModel):
|
||||
_model_type = ModelType.CLIP
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
cache_dir: Path | str | None = None,
|
||||
mode: Literal["text", "vision"] | None = None,
|
||||
**model_kwargs: Any,
|
||||
) -> None:
|
||||
self.mode = mode
|
||||
super().__init__(model_name, cache_dir, **model_kwargs)
|
||||
|
||||
def _load(self) -> None:
|
||||
if self.mode == "text" or self.mode is None:
|
||||
log.debug(f"Loading clip text model '{self.model_name}'")
|
||||
self.text_model = self._make_session(self.textual_path)
|
||||
log.debug(f"Loaded clip text model '{self.model_name}'")
|
||||
|
||||
if self.mode == "vision" or self.mode is None:
|
||||
log.debug(f"Loading clip vision model '{self.model_name}'")
|
||||
self.vision_model = self._make_session(self.visual_path)
|
||||
log.debug(f"Loaded clip vision model '{self.model_name}'")
|
||||
|
||||
def _predict(self, image_or_text: Image.Image | str) -> NDArray[np.float32]:
|
||||
if isinstance(image_or_text, bytes):
|
||||
image_or_text = Image.open(BytesIO(image_or_text))
|
||||
|
||||
match image_or_text:
|
||||
case Image.Image():
|
||||
if self.mode == "text":
|
||||
raise TypeError("Cannot encode image as text-only model")
|
||||
outputs: NDArray[np.float32] = self.vision_model.run(None, self.transform(image_or_text))[0][0]
|
||||
case str():
|
||||
if self.mode == "vision":
|
||||
raise TypeError("Cannot encode text as vision-only model")
|
||||
outputs = self.text_model.run(None, self.tokenize(image_or_text))[0][0]
|
||||
case _:
|
||||
raise TypeError(f"Expected Image or str, but got: {type(image_or_text)}")
|
||||
|
||||
return outputs
|
||||
|
||||
@abstractmethod
|
||||
def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def transform(self, image: Image.Image) -> dict[str, NDArray[np.float32]]:
|
||||
pass
|
||||
|
||||
@property
|
||||
def textual_dir(self) -> Path:
|
||||
return self.cache_dir / "textual"
|
||||
|
||||
@property
|
||||
def visual_dir(self) -> Path:
|
||||
return self.cache_dir / "visual"
|
||||
|
||||
@property
|
||||
def model_cfg_path(self) -> Path:
|
||||
return self.cache_dir / "config.json"
|
||||
|
||||
@property
|
||||
def textual_path(self) -> Path:
|
||||
return self.textual_dir / f"model.{self.preferred_runtime}"
|
||||
|
||||
@property
|
||||
def visual_path(self) -> Path:
|
||||
return self.visual_dir / f"model.{self.preferred_runtime}"
|
||||
|
||||
@property
|
||||
def tokenizer_file_path(self) -> Path:
|
||||
return self.textual_dir / "tokenizer.json"
|
||||
|
||||
@property
|
||||
def tokenizer_cfg_path(self) -> Path:
|
||||
return self.textual_dir / "tokenizer_config.json"
|
||||
|
||||
@property
|
||||
def preprocess_cfg_path(self) -> Path:
|
||||
return self.visual_dir / "preprocess_cfg.json"
|
||||
|
||||
@property
|
||||
def cached(self) -> bool:
|
||||
return self.textual_path.is_file() and self.visual_path.is_file()
|
||||
|
||||
@cached_property
|
||||
def model_cfg(self) -> dict[str, Any]:
|
||||
log.debug(f"Loading model config for CLIP model '{self.model_name}'")
|
||||
model_cfg: dict[str, Any] = json.load(self.model_cfg_path.open())
|
||||
log.debug(f"Loaded model config for CLIP model '{self.model_name}'")
|
||||
return model_cfg
|
||||
|
||||
@cached_property
|
||||
def tokenizer_file(self) -> dict[str, Any]:
|
||||
log.debug(f"Loading tokenizer file for CLIP model '{self.model_name}'")
|
||||
tokenizer_file: dict[str, Any] = json.load(self.tokenizer_file_path.open())
|
||||
log.debug(f"Loaded tokenizer file for CLIP model '{self.model_name}'")
|
||||
return tokenizer_file
|
||||
|
||||
@cached_property
|
||||
def tokenizer_cfg(self) -> dict[str, Any]:
|
||||
log.debug(f"Loading tokenizer config for CLIP model '{self.model_name}'")
|
||||
tokenizer_cfg: dict[str, Any] = json.load(self.tokenizer_cfg_path.open())
|
||||
log.debug(f"Loaded tokenizer config for CLIP model '{self.model_name}'")
|
||||
return tokenizer_cfg
|
||||
|
||||
@cached_property
|
||||
def preprocess_cfg(self) -> dict[str, Any]:
|
||||
log.debug(f"Loading visual preprocessing config for CLIP model '{self.model_name}'")
|
||||
preprocess_cfg: dict[str, Any] = json.load(self.preprocess_cfg_path.open())
|
||||
log.debug(f"Loaded visual preprocessing config for CLIP model '{self.model_name}'")
|
||||
return preprocess_cfg
|
||||
|
||||
|
||||
class OpenCLIPEncoder(BaseCLIPEncoder):
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
cache_dir: Path | str | None = None,
|
||||
mode: Literal["text", "vision"] | None = None,
|
||||
**model_kwargs: Any,
|
||||
) -> None:
|
||||
super().__init__(clean_name(model_name), cache_dir, mode, **model_kwargs)
|
||||
|
||||
def _load(self) -> None:
|
||||
super()._load()
|
||||
self._load_tokenizer()
|
||||
|
||||
size: list[int] | int = self.preprocess_cfg["size"]
|
||||
self.size = size[0] if isinstance(size, list) else size
|
||||
|
||||
self.resampling = get_pil_resampling(self.preprocess_cfg["interpolation"])
|
||||
self.mean = np.array(self.preprocess_cfg["mean"], dtype=np.float32)
|
||||
self.std = np.array(self.preprocess_cfg["std"], dtype=np.float32)
|
||||
|
||||
def _load_tokenizer(self) -> Tokenizer:
|
||||
log.debug(f"Loading tokenizer for CLIP model '{self.model_name}'")
|
||||
|
||||
text_cfg: dict[str, Any] = self.model_cfg["text_cfg"]
|
||||
context_length: int = text_cfg.get("context_length", 77)
|
||||
pad_token: str = self.tokenizer_cfg["pad_token"]
|
||||
|
||||
self.tokenizer: Tokenizer = Tokenizer.from_file(self.tokenizer_file_path.as_posix())
|
||||
|
||||
pad_id: int = self.tokenizer.token_to_id(pad_token)
|
||||
self.tokenizer.enable_padding(length=context_length, pad_token=pad_token, pad_id=pad_id)
|
||||
self.tokenizer.enable_truncation(max_length=context_length)
|
||||
|
||||
log.debug(f"Loaded tokenizer for CLIP model '{self.model_name}'")
|
||||
|
||||
def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]:
|
||||
tokens: Encoding = self.tokenizer.encode(text)
|
||||
return {"text": np.array([tokens.ids], dtype=np.int32)}
|
||||
|
||||
def transform(self, image: Image.Image) -> dict[str, NDArray[np.float32]]:
|
||||
image = resize(image, self.size)
|
||||
image = crop(image, self.size)
|
||||
image_np = to_numpy(image)
|
||||
image_np = normalize(image_np, self.mean, self.std)
|
||||
return {"image": np.expand_dims(image_np.transpose(2, 0, 1), 0)}
|
||||
|
||||
|
||||
class MCLIPEncoder(OpenCLIPEncoder):
|
||||
def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]:
|
||||
tokens: Encoding = self.tokenizer.encode(text)
|
||||
return {
|
||||
"input_ids": np.array([tokens.ids], dtype=np.int32),
|
||||
"attention_mask": np.array([tokens.attention_mask], dtype=np.int32),
|
||||
}
|
||||
98
machine-learning/app/models/clip/textual.py
Normal file
98
machine-learning/app/models/clip/textual.py
Normal file
@@ -0,0 +1,98 @@
|
||||
import json
|
||||
from abc import abstractmethod
|
||||
from functools import cached_property
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
from numpy.typing import NDArray
|
||||
from tokenizers import Encoding, Tokenizer
|
||||
|
||||
from app.config import log
|
||||
from app.models.base import InferenceModel
|
||||
from app.schemas import ModelSession, ModelTask, ModelType
|
||||
|
||||
|
||||
class BaseCLIPTextualEncoder(InferenceModel):
|
||||
depends = []
|
||||
identity = (ModelType.TEXTUAL, ModelTask.SEARCH)
|
||||
|
||||
def _predict(self, inputs: str, **kwargs: Any) -> NDArray[np.float32]:
|
||||
res: NDArray[np.float32] = self.session.run(None, self.tokenize(inputs))[0][0]
|
||||
return res
|
||||
|
||||
def _load(self) -> ModelSession:
|
||||
log.debug(f"Loading tokenizer for CLIP model '{self.model_name}'")
|
||||
self.tokenizer = self._load_tokenizer()
|
||||
log.debug(f"Loaded tokenizer for CLIP model '{self.model_name}'")
|
||||
|
||||
return super()._load()
|
||||
|
||||
@abstractmethod
|
||||
def _load_tokenizer(self) -> Tokenizer:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]:
|
||||
pass
|
||||
|
||||
@property
|
||||
def model_cfg_path(self) -> Path:
|
||||
return self.cache_dir / "config.json"
|
||||
|
||||
@property
|
||||
def tokenizer_file_path(self) -> Path:
|
||||
return self.model_dir / "tokenizer.json"
|
||||
|
||||
@property
|
||||
def tokenizer_cfg_path(self) -> Path:
|
||||
return self.model_dir / "tokenizer_config.json"
|
||||
|
||||
@cached_property
|
||||
def model_cfg(self) -> dict[str, Any]:
|
||||
log.debug(f"Loading model config for CLIP model '{self.model_name}'")
|
||||
model_cfg: dict[str, Any] = json.load(self.model_cfg_path.open())
|
||||
log.debug(f"Loaded model config for CLIP model '{self.model_name}'")
|
||||
return model_cfg
|
||||
|
||||
@cached_property
|
||||
def tokenizer_file(self) -> dict[str, Any]:
|
||||
log.debug(f"Loading tokenizer file for CLIP model '{self.model_name}'")
|
||||
tokenizer_file: dict[str, Any] = json.load(self.tokenizer_file_path.open())
|
||||
log.debug(f"Loaded tokenizer file for CLIP model '{self.model_name}'")
|
||||
return tokenizer_file
|
||||
|
||||
@cached_property
|
||||
def tokenizer_cfg(self) -> dict[str, Any]:
|
||||
log.debug(f"Loading tokenizer config for CLIP model '{self.model_name}'")
|
||||
tokenizer_cfg: dict[str, Any] = json.load(self.tokenizer_cfg_path.open())
|
||||
log.debug(f"Loaded tokenizer config for CLIP model '{self.model_name}'")
|
||||
return tokenizer_cfg
|
||||
|
||||
|
||||
class OpenClipTextualEncoder(BaseCLIPTextualEncoder):
|
||||
def _load_tokenizer(self) -> Tokenizer:
|
||||
text_cfg: dict[str, Any] = self.model_cfg["text_cfg"]
|
||||
context_length: int = text_cfg.get("context_length", 77)
|
||||
pad_token: str = self.tokenizer_cfg["pad_token"]
|
||||
|
||||
tokenizer: Tokenizer = Tokenizer.from_file(self.tokenizer_file_path.as_posix())
|
||||
|
||||
pad_id: int = tokenizer.token_to_id(pad_token)
|
||||
tokenizer.enable_padding(length=context_length, pad_token=pad_token, pad_id=pad_id)
|
||||
tokenizer.enable_truncation(max_length=context_length)
|
||||
|
||||
return tokenizer
|
||||
|
||||
def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]:
|
||||
tokens: Encoding = self.tokenizer.encode(text)
|
||||
return {"text": np.array([tokens.ids], dtype=np.int32)}
|
||||
|
||||
|
||||
class MClipTextualEncoder(OpenClipTextualEncoder):
|
||||
def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]:
|
||||
tokens: Encoding = self.tokenizer.encode(text)
|
||||
return {
|
||||
"input_ids": np.array([tokens.ids], dtype=np.int32),
|
||||
"attention_mask": np.array([tokens.attention_mask], dtype=np.int32),
|
||||
}
|
||||
69
machine-learning/app/models/clip/visual.py
Normal file
69
machine-learning/app/models/clip/visual.py
Normal file
@@ -0,0 +1,69 @@
|
||||
import json
|
||||
from abc import abstractmethod
|
||||
from functools import cached_property
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
from numpy.typing import NDArray
|
||||
from PIL import Image
|
||||
|
||||
from app.config import log
|
||||
from app.models.base import InferenceModel
|
||||
from app.models.transforms import crop_pil, decode_pil, get_pil_resampling, normalize, resize_pil, to_numpy
|
||||
from app.schemas import ModelSession, ModelTask, ModelType
|
||||
|
||||
|
||||
class BaseCLIPVisualEncoder(InferenceModel):
|
||||
depends = []
|
||||
identity = (ModelType.VISUAL, ModelTask.SEARCH)
|
||||
|
||||
def _predict(self, inputs: Image.Image | bytes, **kwargs: Any) -> NDArray[np.float32]:
|
||||
image = decode_pil(inputs)
|
||||
res: NDArray[np.float32] = self.session.run(None, self.transform(image))[0][0]
|
||||
return res
|
||||
|
||||
@abstractmethod
|
||||
def transform(self, image: Image.Image) -> dict[str, NDArray[np.float32]]:
|
||||
pass
|
||||
|
||||
@property
|
||||
def model_cfg_path(self) -> Path:
|
||||
return self.cache_dir / "config.json"
|
||||
|
||||
@property
|
||||
def preprocess_cfg_path(self) -> Path:
|
||||
return self.model_dir / "preprocess_cfg.json"
|
||||
|
||||
@cached_property
|
||||
def model_cfg(self) -> dict[str, Any]:
|
||||
log.debug(f"Loading model config for CLIP model '{self.model_name}'")
|
||||
model_cfg: dict[str, Any] = json.load(self.model_cfg_path.open())
|
||||
log.debug(f"Loaded model config for CLIP model '{self.model_name}'")
|
||||
return model_cfg
|
||||
|
||||
@cached_property
|
||||
def preprocess_cfg(self) -> dict[str, Any]:
|
||||
log.debug(f"Loading visual preprocessing config for CLIP model '{self.model_name}'")
|
||||
preprocess_cfg: dict[str, Any] = json.load(self.preprocess_cfg_path.open())
|
||||
log.debug(f"Loaded visual preprocessing config for CLIP model '{self.model_name}'")
|
||||
return preprocess_cfg
|
||||
|
||||
|
||||
class OpenClipVisualEncoder(BaseCLIPVisualEncoder):
|
||||
def _load(self) -> ModelSession:
|
||||
size: list[int] | int = self.preprocess_cfg["size"]
|
||||
self.size = size[0] if isinstance(size, list) else size
|
||||
|
||||
self.resampling = get_pil_resampling(self.preprocess_cfg["interpolation"])
|
||||
self.mean = np.array(self.preprocess_cfg["mean"], dtype=np.float32)
|
||||
self.std = np.array(self.preprocess_cfg["std"], dtype=np.float32)
|
||||
|
||||
return super()._load()
|
||||
|
||||
def transform(self, image: Image.Image) -> dict[str, NDArray[np.float32]]:
|
||||
image = resize_pil(image, self.size)
|
||||
image = crop_pil(image, self.size)
|
||||
image_np = to_numpy(image)
|
||||
image_np = normalize(image_np, self.mean, self.std)
|
||||
return {"image": np.expand_dims(image_np.transpose(2, 0, 1), 0)}
|
||||
@@ -1,4 +1,5 @@
|
||||
from app.config import clean_name
|
||||
from app.schemas import ModelSource
|
||||
|
||||
_OPENCLIP_MODELS = {
|
||||
"RN50__openai",
|
||||
@@ -54,13 +55,16 @@ _INSIGHTFACE_MODELS = {
|
||||
SUPPORTED_PROVIDERS = ["CUDAExecutionProvider", "OpenVINOExecutionProvider", "CPUExecutionProvider"]
|
||||
|
||||
|
||||
def is_openclip(model_name: str) -> bool:
|
||||
return clean_name(model_name) in _OPENCLIP_MODELS
|
||||
def get_model_source(model_name: str) -> ModelSource | None:
|
||||
cleaned_name = clean_name(model_name)
|
||||
|
||||
if cleaned_name in _INSIGHTFACE_MODELS:
|
||||
return ModelSource.INSIGHTFACE
|
||||
|
||||
def is_mclip(model_name: str) -> bool:
|
||||
return clean_name(model_name) in _MCLIP_MODELS
|
||||
if cleaned_name in _MCLIP_MODELS:
|
||||
return ModelSource.MCLIP
|
||||
|
||||
if cleaned_name in _OPENCLIP_MODELS:
|
||||
return ModelSource.OPENCLIP
|
||||
|
||||
def is_insightface(model_name: str) -> bool:
|
||||
return clean_name(model_name) in _INSIGHTFACE_MODELS
|
||||
return None
|
||||
|
||||
@@ -1,90 +0,0 @@
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from insightface.model_zoo import ArcFaceONNX, RetinaFace
|
||||
from insightface.utils.face_align import norm_crop
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from app.config import clean_name
|
||||
from app.schemas import Face, ModelType, is_ndarray
|
||||
|
||||
from .base import InferenceModel
|
||||
|
||||
|
||||
class FaceRecognizer(InferenceModel):
|
||||
_model_type = ModelType.FACIAL_RECOGNITION
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
min_score: float = 0.7,
|
||||
cache_dir: Path | str | None = None,
|
||||
**model_kwargs: Any,
|
||||
) -> None:
|
||||
self.min_score = model_kwargs.pop("minScore", min_score)
|
||||
super().__init__(clean_name(model_name), cache_dir, **model_kwargs)
|
||||
|
||||
def _load(self) -> None:
|
||||
self.det_model = RetinaFace(session=self._make_session(self.det_file))
|
||||
self.rec_model = ArcFaceONNX(
|
||||
self.rec_file.with_suffix(".onnx").as_posix(),
|
||||
session=self._make_session(self.rec_file),
|
||||
)
|
||||
|
||||
self.det_model.prepare(
|
||||
ctx_id=0,
|
||||
det_thresh=self.min_score,
|
||||
input_size=(640, 640),
|
||||
)
|
||||
self.rec_model.prepare(ctx_id=0)
|
||||
|
||||
def _predict(self, image: NDArray[np.uint8] | bytes) -> list[Face]:
|
||||
if isinstance(image, bytes):
|
||||
decoded_image = cv2.imdecode(np.frombuffer(image, np.uint8), cv2.IMREAD_COLOR)
|
||||
else:
|
||||
decoded_image = image
|
||||
assert is_ndarray(decoded_image, np.uint8)
|
||||
bboxes, kpss = self.det_model.detect(decoded_image)
|
||||
if bboxes.size == 0:
|
||||
return []
|
||||
assert is_ndarray(kpss, np.float32)
|
||||
|
||||
scores = bboxes[:, 4].tolist()
|
||||
bboxes = bboxes[:, :4].round().tolist()
|
||||
|
||||
results = []
|
||||
height, width, _ = decoded_image.shape
|
||||
for (x1, y1, x2, y2), score, kps in zip(bboxes, scores, kpss):
|
||||
cropped_img = norm_crop(decoded_image, kps)
|
||||
embedding: NDArray[np.float32] = self.rec_model.get_feat(cropped_img)[0]
|
||||
face: Face = {
|
||||
"imageWidth": width,
|
||||
"imageHeight": height,
|
||||
"boundingBox": {
|
||||
"x1": x1,
|
||||
"y1": y1,
|
||||
"x2": x2,
|
||||
"y2": y2,
|
||||
},
|
||||
"score": score,
|
||||
"embedding": embedding,
|
||||
}
|
||||
results.append(face)
|
||||
return results
|
||||
|
||||
@property
|
||||
def cached(self) -> bool:
|
||||
return self.det_file.is_file() and self.rec_file.is_file()
|
||||
|
||||
@property
|
||||
def det_file(self) -> Path:
|
||||
return self.cache_dir / "detection" / f"model.{self.preferred_runtime}"
|
||||
|
||||
@property
|
||||
def rec_file(self) -> Path:
|
||||
return self.cache_dir / "recognition" / f"model.{self.preferred_runtime}"
|
||||
|
||||
def configure(self, **model_kwargs: Any) -> None:
|
||||
self.det_model.det_thresh = model_kwargs.pop("minScore", self.det_model.det_thresh)
|
||||
48
machine-learning/app/models/facial_recognition/detection.py
Normal file
48
machine-learning/app/models/facial_recognition/detection.py
Normal file
@@ -0,0 +1,48 @@
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
from insightface.model_zoo import RetinaFace
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from app.models.base import InferenceModel
|
||||
from app.models.transforms import decode_cv2
|
||||
from app.schemas import FaceDetectionOutput, ModelSession, ModelTask, ModelType
|
||||
|
||||
|
||||
class FaceDetector(InferenceModel):
|
||||
depends = []
|
||||
identity = (ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
min_score: float = 0.7,
|
||||
cache_dir: Path | str | None = None,
|
||||
**model_kwargs: Any,
|
||||
) -> None:
|
||||
self.min_score = model_kwargs.pop("minScore", min_score)
|
||||
super().__init__(model_name, cache_dir, **model_kwargs)
|
||||
|
||||
def _load(self) -> ModelSession:
|
||||
session = self._make_session(self.model_path)
|
||||
self.model = RetinaFace(session=session)
|
||||
self.model.prepare(ctx_id=0, det_thresh=self.min_score, input_size=(640, 640))
|
||||
|
||||
return session
|
||||
|
||||
def _predict(self, inputs: NDArray[np.uint8] | bytes, **kwargs: Any) -> FaceDetectionOutput:
|
||||
inputs = decode_cv2(inputs)
|
||||
|
||||
bboxes, landmarks = self._detect(inputs)
|
||||
return {
|
||||
"boxes": bboxes[:, :4].round(),
|
||||
"scores": bboxes[:, 4],
|
||||
"landmarks": landmarks,
|
||||
}
|
||||
|
||||
def _detect(self, inputs: NDArray[np.uint8] | bytes) -> tuple[NDArray[np.float32], NDArray[np.float32]]:
|
||||
return self.model.detect(inputs) # type: ignore
|
||||
|
||||
def configure(self, **kwargs: Any) -> None:
|
||||
self.model.det_thresh = kwargs.pop("minScore", self.model.det_thresh)
|
||||
@@ -0,0 +1,77 @@
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import onnx
|
||||
import onnxruntime as ort
|
||||
from insightface.model_zoo import ArcFaceONNX
|
||||
from insightface.utils.face_align import norm_crop
|
||||
from numpy.typing import NDArray
|
||||
from onnx.tools.update_model_dims import update_inputs_outputs_dims
|
||||
from PIL import Image
|
||||
|
||||
from app.config import clean_name, log
|
||||
from app.models.base import InferenceModel
|
||||
from app.models.transforms import decode_cv2
|
||||
from app.schemas import FaceDetectionOutput, FacialRecognitionOutput, ModelSession, ModelTask, ModelType
|
||||
|
||||
|
||||
class FaceRecognizer(InferenceModel):
|
||||
depends = [(ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION)]
|
||||
identity = (ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
min_score: float = 0.7,
|
||||
cache_dir: Path | str | None = None,
|
||||
**model_kwargs: Any,
|
||||
) -> None:
|
||||
self.min_score = model_kwargs.pop("minScore", min_score)
|
||||
super().__init__(clean_name(model_name), cache_dir, **model_kwargs)
|
||||
|
||||
def _load(self) -> ModelSession:
|
||||
session = self._make_session(self.model_path)
|
||||
if not self._has_batch_dim(session):
|
||||
self._add_batch_dim(self.model_path)
|
||||
session = self._make_session(self.model_path)
|
||||
self.model = ArcFaceONNX(
|
||||
self.model_path.with_suffix(".onnx").as_posix(),
|
||||
session=session,
|
||||
)
|
||||
return session
|
||||
|
||||
def _predict(
|
||||
self, inputs: NDArray[np.uint8] | bytes | Image.Image, faces: FaceDetectionOutput, **kwargs: Any
|
||||
) -> FacialRecognitionOutput:
|
||||
if faces["boxes"].shape[0] == 0:
|
||||
return []
|
||||
inputs = decode_cv2(inputs)
|
||||
embeddings: NDArray[np.float32] = self.model.get_feat(self._crop(inputs, faces))
|
||||
return self.postprocess(faces, embeddings)
|
||||
|
||||
def postprocess(self, faces: FaceDetectionOutput, embeddings: NDArray[np.float32]) -> FacialRecognitionOutput:
|
||||
return [
|
||||
{
|
||||
"boundingBox": {"x1": x1, "y1": y1, "x2": x2, "y2": y2},
|
||||
"embedding": embedding,
|
||||
"score": score,
|
||||
}
|
||||
for (x1, y1, x2, y2), embedding, score in zip(faces["boxes"], embeddings, faces["scores"])
|
||||
]
|
||||
|
||||
def _crop(self, image: NDArray[np.uint8], faces: FaceDetectionOutput) -> list[NDArray[np.uint8]]:
|
||||
return [norm_crop(image, landmark) for landmark in faces["landmarks"]]
|
||||
|
||||
def _has_batch_dim(self, session: ort.InferenceSession) -> bool:
|
||||
return not isinstance(session, ort.InferenceSession) or session.get_inputs()[0].shape[0] == "batch"
|
||||
|
||||
def _add_batch_dim(self, model_path: Path) -> None:
|
||||
log.debug(f"Adding batch dimension to model {model_path}")
|
||||
proto = onnx.load(model_path)
|
||||
static_input_dims = [shape.dim_value for shape in proto.graph.input[0].type.tensor_type.shape.dim[1:]]
|
||||
static_output_dims = [shape.dim_value for shape in proto.graph.output[0].type.tensor_type.shape.dim[1:]]
|
||||
input_dims = {proto.graph.input[0].name: ["batch"] + static_input_dims}
|
||||
output_dims = {proto.graph.output[0].name: ["batch"] + static_output_dims}
|
||||
updated_proto = update_inputs_outputs_dims(proto, input_dims, output_dims)
|
||||
onnx.save(updated_proto, model_path)
|
||||
0
machine-learning/app/models/session.py
Normal file
0
machine-learning/app/models/session.py
Normal file
@@ -1,3 +1,7 @@
|
||||
from io import BytesIO
|
||||
from typing import IO
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from numpy.typing import NDArray
|
||||
from PIL import Image
|
||||
@@ -5,7 +9,7 @@ from PIL import Image
|
||||
_PIL_RESAMPLING_METHODS = {resampling.name.lower(): resampling for resampling in Image.Resampling}
|
||||
|
||||
|
||||
def resize(img: Image.Image, size: int) -> Image.Image:
|
||||
def resize_pil(img: Image.Image, size: int) -> Image.Image:
|
||||
if img.width < img.height:
|
||||
return img.resize((size, int((img.height / img.width) * size)), resample=Image.Resampling.BICUBIC)
|
||||
else:
|
||||
@@ -13,7 +17,7 @@ def resize(img: Image.Image, size: int) -> Image.Image:
|
||||
|
||||
|
||||
# https://stackoverflow.com/a/60883103
|
||||
def crop(img: Image.Image, size: int) -> Image.Image:
|
||||
def crop_pil(img: Image.Image, size: int) -> Image.Image:
|
||||
left = int((img.size[0] / 2) - (size / 2))
|
||||
upper = int((img.size[1] / 2) - (size / 2))
|
||||
right = left + size
|
||||
@@ -23,14 +27,36 @@ def crop(img: Image.Image, size: int) -> Image.Image:
|
||||
|
||||
|
||||
def to_numpy(img: Image.Image) -> NDArray[np.float32]:
|
||||
return np.asarray(img.convert("RGB")).astype(np.float32) / 255.0
|
||||
return np.asarray(img if img.mode == "RGB" else img.convert("RGB"), dtype=np.float32) / 255.0
|
||||
|
||||
|
||||
def normalize(
|
||||
img: NDArray[np.float32], mean: float | NDArray[np.float32], std: float | NDArray[np.float32]
|
||||
) -> NDArray[np.float32]:
|
||||
return (img - mean) / std
|
||||
return np.divide(img - mean, std, dtype=np.float32)
|
||||
|
||||
|
||||
def get_pil_resampling(resample: str) -> Image.Resampling:
|
||||
return _PIL_RESAMPLING_METHODS[resample.lower()]
|
||||
|
||||
|
||||
def pil_to_cv2(image: Image.Image) -> NDArray[np.uint8]:
|
||||
return cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) # type: ignore
|
||||
|
||||
|
||||
def decode_pil(image_bytes: bytes | IO[bytes] | Image.Image) -> Image.Image:
|
||||
if isinstance(image_bytes, Image.Image):
|
||||
return image_bytes
|
||||
image = Image.open(BytesIO(image_bytes) if isinstance(image_bytes, bytes) else image_bytes)
|
||||
image.load() # type: ignore
|
||||
if not image.mode == "RGB":
|
||||
image = image.convert("RGB")
|
||||
return image
|
||||
|
||||
|
||||
def decode_cv2(image_bytes: NDArray[np.uint8] | bytes | Image.Image) -> NDArray[np.uint8]:
|
||||
if isinstance(image_bytes, bytes):
|
||||
image_bytes = decode_pil(image_bytes) # pillow is much faster than cv2
|
||||
if isinstance(image_bytes, Image.Image):
|
||||
return pil_to_cv2(image_bytes)
|
||||
return image_bytes
|
||||
|
||||
Reference in New Issue
Block a user