Files
immich/server/src/services/smart-info.service.ts

106 lines
3.6 KiB
TypeScript
Raw Normal View History

import { Inject, Injectable } from '@nestjs/common';
import { SystemConfigCore } from 'src/cores/system-config.core';
import { IAssetRepository, WithoutProperty } from 'src/interfaces/asset.interface';
import { DatabaseLock, IDatabaseRepository } from 'src/interfaces/database.interface';
2024-03-20 22:15:09 -05:00
import {
IBaseJob,
IEntityJob,
IJobRepository,
JOBS_ASSET_PAGINATION_SIZE,
JobName,
JobStatus,
QueueName,
} from 'src/interfaces/job.interface';
import { IMachineLearningRepository } from 'src/interfaces/machine-learning.interface';
import { ISearchRepository } from 'src/interfaces/search.interface';
import { ISystemConfigRepository } from 'src/interfaces/system-config.interface';
2024-03-20 22:15:09 -05:00
import { ImmichLogger } from 'src/utils/logger';
import { usePagination } from 'src/utils/pagination';
@Injectable()
export class SmartInfoService {
private configCore: SystemConfigCore;
private logger = new ImmichLogger(SmartInfoService.name);
constructor(
@Inject(IAssetRepository) private assetRepository: IAssetRepository,
@Inject(IDatabaseRepository) private databaseRepository: IDatabaseRepository,
@Inject(IJobRepository) private jobRepository: IJobRepository,
@Inject(IMachineLearningRepository) private machineLearning: IMachineLearningRepository,
@Inject(ISearchRepository) private repository: ISearchRepository,
@Inject(ISystemConfigRepository) configRepository: ISystemConfigRepository,
) {
this.configCore = SystemConfigCore.create(configRepository);
}
2023-12-08 11:15:46 -05:00
async init() {
await this.jobRepository.pause(QueueName.SMART_SEARCH);
2023-12-08 11:15:46 -05:00
feat(server): separate face clustering job (#5598) * separate facial clustering job * update api * fixed some tests * invert clustering * hdbscan * update api * remove commented code * wip dbscan * cleanup removed cluster endpoint remove commented code * fixes updated tests minor fixes and formatting fixed queuing refinements * scale search range based on library size * defer non-core faces * optimizations removed unused query option * assign faces individually for correctness fixed unit tests remove unused method * don't select face embedding update sql linting fixed ml typing * updated job mock * paginate people query * select face embeddings because typeorm * fix setting face detection concurrency * update sql formatting linting * simplify logic remove unused imports * more specific delete signature * more accurate typing for face stubs * add migration formatting * chore: better typing * don't select embedding by default remove unused import * updated sql * use normal try/catch * stricter concurrency typing and enforcement * update api * update job concurrency panel to show disabled queues formatting * check jobId in queueAll fix tests * remove outdated comment * better facial recognition icon * wording wording formatting * fixed tests * fix * formatting & sql * try to fix sql check * more detailed description * update sql * formatting * wording * update `minFaces` description --------- Co-authored-by: Jason Rasmussen <jrasm91@gmail.com> Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
2024-01-18 00:08:48 -05:00
await this.jobRepository.waitForQueueCompletion(QueueName.SMART_SEARCH);
2023-12-08 11:15:46 -05:00
const { machineLearning } = await this.configCore.getConfig();
await this.databaseRepository.withLock(DatabaseLock.CLIPDimSize, () =>
this.repository.init(machineLearning.clip.modelName),
);
2023-12-08 11:15:46 -05:00
await this.jobRepository.resume(QueueName.SMART_SEARCH);
2023-12-08 11:15:46 -05:00
}
async handleQueueEncodeClip({ force }: IBaseJob): Promise<JobStatus> {
const { machineLearning } = await this.configCore.getConfig();
if (!machineLearning.enabled || !machineLearning.clip.enabled) {
return JobStatus.SKIPPED;
}
if (force) {
await this.repository.deleteAllSearchEmbeddings();
}
const assetPagination = usePagination(JOBS_ASSET_PAGINATION_SIZE, (pagination) => {
return force
? this.assetRepository.getAll(pagination)
: this.assetRepository.getWithout(pagination, WithoutProperty.SMART_SEARCH);
});
for await (const assets of assetPagination) {
await this.jobRepository.queueAll(
assets.map((asset) => ({ name: JobName.SMART_SEARCH, data: { id: asset.id } })),
);
}
return JobStatus.SUCCESS;
}
async handleEncodeClip({ id }: IEntityJob): Promise<JobStatus> {
const { machineLearning } = await this.configCore.getConfig();
if (!machineLearning.enabled || !machineLearning.clip.enabled) {
return JobStatus.SKIPPED;
}
const [asset] = await this.assetRepository.getByIds([id]);
if (!asset) {
return JobStatus.FAILED;
}
if (!asset.resizePath) {
return JobStatus.FAILED;
}
const clipEmbedding = await this.machineLearning.encodeImage(
machineLearning.url,
{ imagePath: asset.resizePath },
machineLearning.clip,
);
if (this.databaseRepository.isBusy(DatabaseLock.CLIPDimSize)) {
this.logger.verbose(`Waiting for CLIP dimension size to be updated`);
await this.databaseRepository.wait(DatabaseLock.CLIPDimSize);
}
await this.repository.upsert(asset.id, clipEmbedding);
return JobStatus.SUCCESS;
}
}